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TECHNICAL NOTE 3223

AN ANALYSIS OF SHOCK-WA~ CANCELLATION AND REFLECTION

FOR POROUS WALIS WHICH OBEY AN EXPONENTIAL

MASS-FLOW PRESSURE-DD’FERENCE RELA!I’ION

By Joseph M. Spiegel and Phillips J. Tunnell

SUMMARY

Two-dimensional oblique shock-wave theory is used to define condi-
tions for cancellation and reflection of shock waves from porous walls.
An exponential relation between mass flow normal to the walls and pres-
sure differential.through the waU.s is assumed. A porosity factor is
defined which uniquely determines cancellation conditions and is inde-
pendent of the exponent of the mass-flow pressure-difference relation
but is dependent upon lhe amount of wall suction. For the reflection
case an approximate explicit solution for the reflected wave strength
is derived and, in general, is found to be a function of the flow
exponent, the amount of wall suction, and the porosity factor of the
porous medium. It is pointed out that the flow across a curved three-
dimensional shock wave can be related to two-dimensional flow, so that
information as to the cancellation conditions for three-dimensional
disturbances can be obtained from the analysis.

INTRODUCTION

Porous walls are used in transonic test sections at low supersonic
speeds for the purpose of canceling or attenuating flow disturbances
that ordinarily reflect from solid boundaries. These disturbances can
originate from a test model or from extrinsic sources farther upstream.
Two past reports, which deal theoretically with the subject, neglect
two important factors which reduce their usefulness in the study of
real flows. First, in general, these reports assumed a linear relation
between the flow normal to the wall and the pressure difference across
the wall, which experimentally is not usually the case. Second, they
neglected the complicating effects of the interaction between shock
waves and boundary layer at the tunnel walls so that the problem could
be more easily analyzed. This, in itself, is not too serious an omission
because large portions of the boundary Iayer in transonic wind tunnels

—..—.-.— ——— — ——



2 NACATN 3223

can be removed by porous suction, and its removal is beneficial from the
standpoint of boundary-layer interaction effects and probably power
requirements. However, neither report makes allowance for the applica-
tion of wall suction which is required to remove the boundary layer nor
other possible effects related to wall.suction.

In reference 1 charts are presented which describe the wall porosity
required for complete shock-wave absorption in the absence of boundary
layer. Additional charts obtained by graphical methods enable the deter-
mination of reflected shock-wave strengths. For the general case, these
charts are based on an assumed linear relation between pressure differ-
ence across the wall and flow normal to the -and in two other specific
cases sx’ebased on the exper~ntal characteristics of two porous mate-
rials having nonlinear flow relations.

In reference 2 a linear relation for the porous wall is also assumed.
This report differs from reference 1 in that m approximate explicit
solution for the strength of the reflected shock wave is presented as
well as an equation &scribing shock-wave cancellation conditions.

In the present report a generalized exponential relation between
pressure difference and normal flow is assumed which adequately describes
porous-wall calibrations obtained experimentally at the Ames Laboratory
and those presented in references 1 and 3. On this basis, conditions for
oblique shock-wave cancellation and reflection are derived. Ml results
have provisions for use of an arbitrary amount of wall suction.
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static pressure

-C pressure

perfect-gas constant

absolute temperature

velocity along streamline

velocity perpendicular to free stream

velocity normal to porous wall

()Mach an@e, SiI1-= ~

ratio of specific heats (1.4 for air)

equivalent wedge angle

angle of shock wave

angle between free stream and porous wall

density

Subscripts

upstream of initial shock wave

downstream of initial shock wave

downstream of reflected shock wave

cancellation conditions

initial suction

reflection conditions

tank enclo8ing test section

suction

conditions at same pressure difference as K&
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ANALYSIS

The purpose of this analysis is to relate the flow conditiofi of
oblique shock waves to the flow characteristics of porous walls, based
on the assumption that no boundary layer due to the tunnel walls is
present. This situation will exist only if the boundary layer is removed
by porous-wall suction, and therefore suction will be considered in the
analysis.

It is first necessary to define the boundary condition. It is
assumed that pressure drop through the porous medium follows the exponen-
tial relation

P -pt= B(PvnP (1)

For convenience, equation (1) can be written as

I-m
Pvn—=
P-Pt

*( P- Pt)~=#P -Pt)n

or in dimensionless form a’porosity factor, K, can be defined such that

PVn/Poao
K=

()

~ P-Pt n=

(P-Pt)/P. P.

. By use of the perfect-gas law

PVn
K

f

RTO=— —
P-Pt 7

which is a convenient form for
The constants of equations (1)

computing K from experimental data.
and (2) are related by

1 ()Po
1/m

——c
‘~oao\B)

(2)

(2a)

This definition of a porosity factor, K, was first presented in refer-
ence 1 in a slightly different form. It can be interpreted as the
ability of a porous medium to pass air per unit pressure difference.
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Shock-Wave CanceUation

For purposes of and.ysis, it is convenient to %egin with the case
of no suction applied to the porous waUs, although this is entirely
hypothetical since, in the absence of suction, a boundary layer wilJ.
exist at the wall. In actuality, as the suction is increased, the con-
ditions shown in figure 1 will be more nearly approached.

The porosity factor, K, required for cancellation of an oblique
shock wave can be determined by considering the flow changes through the
impinging shock wave. For shock cancellation without suction (V=()),con-
ditions in region (1) of figure 1 must be maintained at the wall down-
stream of region (l), and 52 becomes zero. From oblique-shock-wave
relations (ref. k)

and

V1—

Pl iW e=

~= tan(e=-5J

a. l+tanb=tme=

P=-PO ~~2 tan 8= tan e=
—=
P. l+tan~= tan 0=

(3)

(4)

(5)

Thereforej the porosity factor, K, for cancellation becomes (eqs. (3),
(4) j and (5) substituted into the definition of K)

Kc=
PVJPoao %+oao

(P-Pt)/Po = (PI-PO)/P.

or

Cot(e=+
Kc =

Y%
(6)

.
when pt = P. and v=()(no initial suction). Since 61 depends only
on 5= and%, & and (P1-Po)/Po == ~@elY determined when 81 ~d%
are specified. In figure 2, & is plottedas a functionof (P=-Po)/Po

.——————
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(eqs. (6) and (5), respectively),both for constant values of deflection
angle and Mach nuuiber. This type of plot is convenient because porous-
wall calibrations canle superposed directly onto this grid of cancella-
tion conditions as is shown in the figure. It is apparent that if the
porosity of a psx’titularwall is specifiedby equation (2), then for any
free-streamMach number, ~, cancellation can occur at only two values
of 61 at the most, and generally just one. This restriction canbe
removed by the use of wall suction.

For the case of shock-wave cancellation with walJ.suction, the
definition of K becomes

p=v#&o
%3 =

(P=-P#Po

or

Km =

P=V=sin(5=+V) pn

(P1-Pt) P&j

Plv=cos v + Povno Cos 6= Plv=/Povo p.

(PI-PO) + (Po-P~)

Using equation (3) and the oblique-shock-wave

equation (7) can

&s

where

and

v= Cos e=

V.
— = ~os(el-fjl)

be written as

Poao

equation

G cos v+ DKs sin 0= cos b=/sin(el+=)

Ks =

l+D

D
Po-Pt=—
PI-PO

POVO sin v/Poao

(Po-Pt)/%

(7)

(8)

(9)

Povno/Poao
(lo)

= (Po-Pt)ho

which defines the Dorosilzvfactor for suction alone. In the above equa-
tions Povno repr~sents ~he mass outflow per unit area through the
porous walls for a given suction pressure differential, po-pt. It is

—.
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seen that &s from equation (9) as well as Kc from equation (6) are
point functions, and therefore cancelMtion can be achieved by all wall-
calihration curves passing through these points, irrespective of their
exponents of flow, i. Sfice (fromeqo (2)), -

()P=-Pt n
KC$=CY

o
and

equation (9)

(1 i-

can be written as

sin 01 cos 6=
D)W1 -

sin(el+=)

for D >0 and Cc/C <1. Equation

\~o/

n+l cc
D

Kc
=—COSV =—COSV

c
(n)

K?

(il.)specifies the amount of suction
pressure differential required to achieve shock-wave cancellation. It
can be seen from equation (Il.)that for a particular wall calibration
determined by C and n, cancellation can now be obtained over a range of
~ and 5=, provided the wall suction, D, is varied in accordance with
this equation. For the approximate case of 51 andv approaching zero,
equation (11) becomes

(l+ D)n+’ -

Since equation (12) cannot be solved
been plotted in figure 3 with n as
to -0.5 (m=lto 2).

n+l
D

cc=—
c

(12)

explicitly for D, the equation has
the parameter for the range of O

Shock-Wave Reflection

In the previous section the porosity factor
cancellation with suction was specified. It mS

porous wall.,any shock wave for.which Cc/C< 1
suction is used. For Cc/C > 1, impinging shock

required for shock-wave
shown that for a given
can be canceled when
waves till be reflected

. as shock waves of reduce~inter&ity; It is the purpose of this section
to determine the reflected wave strength (52 or pa-p=) as a function of
the porous-wall characteristicswith suction. For this case the porosity

- factor for reflection (Krs) can be expressed as a function of conditions
in region (2) of figure 1.

—.. — .———.—.——— — ——- -..—— .——
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p=vm/Poao P2V2 sin I (~=*2) + VI P.
Kr~ = =

(P2-P~)/P. (P2-PO) + (Po-P~) =

or

%y use

P2V2 Cos v + Povm Cos(5=-82)P2VJPOV0
Kr8 =

(I?2-PO)+ (Po-P~)

of equations (3) and (8),1 equation (13) can he

P.

G

written as

(13)

Krs. Z(’+-)cos‘+=’‘:~::,)*c0s(5’-52)—.
Kc- P2-P1

l+D+—
P=-PO

(14)

But Kr is the porosity factor for reflection wtthout suction and can
be expressed as

P2V2 sin(b=-52) p. p2v2 ‘in(51+’) p~-po
Kr = —’KC

poao P’-PO PIV= sin 6= —P2-P0
(u)

or, using equations (3)

Kr=&

Equations (14) ad (16)

and (8) y equation (15) becomes

can be conibinedto give

(16)

Kc
l+D+W

P=-PO

lIt is to be noted that equations (3)j (4)z (5)J =d (8) aPPIY to
region (2) when the appropriate subscripts are used.
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By use of equation (5) and appropriate subscripts, equation (17) becomes

sin 02

[

sin(b=~z) ~os V+ ED sin 8=
Krs sin(f32-52) sin 5= & ‘~l

COS(51-52)

K’
4 (18)

sin ?3= cos el
l+D+—

sin 92

sin 51 sin(e=-81) c0s(e2-b2)

Equation (18) expresses the porosity factor for reflection as a function
of the reflected wave strengkh, 52 (e2 is a function of 52 and Ml).
It is more useful, however, to obtain 5

?

as a function of C, n, and
the initial wave strength. By equation 2)

%&=i(%y ‘%[ P=-PO 1(P2-P=) + (P=-Pc’j)+ (P&Pt) n

or

Krs

[

n
—=: (l+ D)+-
Kc P=-P.1

Noting that

KS ()_Q Po-pt n C ~n=—
Kc cc PI-PO cc

the substitution of equations (19) and (20) into equation (17) gives

sin ea sin(bl-~a) ~os y

c Kt sin(e2-52) sin bl—=— s-.

(19)

(20)

Uc ~

(
n+l

)

~ ~ ~ + ‘2-PI -Dn+l sin e2 sin el
P=-PO

COS(8=-52)
sin(e2-62) sin(el-51)

where K? is a point on the real

(p - pt)/po Correspon-g ‘0 &

(E@

calibration curve at the value of
(see fig. 2). Equation (18) becomes

.—._.. -—.— ..—— ——



Cc-Kc-

[

sin 82 COB 91 sin ez

1
n-!-l6in e= sin el

(l+D)+— -Dn+l COS(61-6=)
EIin 81 .sin(@l-$l) COB(e2-82) ,9in(9=-82) sin(el~l)

equation (22) permits 82 to be

with 81) n, and D as parameters.

the real wall under consideration;

through any point ~ with the

If the wall angle, V, Is tif iclentl.y .wkU so that COB V w 1,

determined .ss a function of C (or K! ) by graphical inversion

It is to be notecl that C represents the calibration curve of

whereas Cc represents m Imagiq calibration curve paBBing

same exponent n as the real waU.. For example, let the characteristics of the pmoua medium

undm comideration be represented by the real wall. calibration curve shown in figure 2. H the

incident wave, ~Ij has a deflection angle of 1° at ~ = 1.20, then the Imaginsry curve is the

dashed li?M passing through pOiIIt &l mel ta the red. calibration curve. Points &-. and

K=l are calculated as exampks in the appendix.

‘lb determine an approx~te explicit solution for the reflected wave strength, it is first

aSSU=d ttit 62) (P -Pi)/(Pl-Po) j and A9 are u compmxi to unity where ez.~+Ae.
Then, by w of the %nordal series, neglecting squamcl terms of small quantities, and letting
E = 1 + D, the pressure term of equation (21) ?Mcoms

(E+-)M’=N+’(’+=%+” “ “)
so that equation (21) becomes

Ml K1 Bh 91 COS 81

D
~ Sin(el-bl) [

1 + 82(-&n 8= + IQ 1

P
o

r



The pressure term can be approximated by

12XL
sin 62 COB .91 sin !92

.—
Pl -P. sin 51 sin(@l-81) coe(@2J52) =

Inserting equation (24) into equation (23) and solving for

[ (~lsin(f31-31)sin 61 cos v - ~ En+l -
c

82 =

[

~n+ 1

PI COB v sin(el%l)(cos 61-~sin 51) + ~ (m-l) EnCOH el 1-~1
tan 01 sin 5

‘ (sin 51+13=COS 8J

P(n+l) 1

Equation

is small

sero and

(2>), therefore, is anapproximte solution for the reflected wave s@n@h (82)

cmpoxed to the initial wave. As a further approximation, 81 can be assumed to

Cos v = 1. Then equation (2-5)ticoms

5=[. -:(.n+%n+y
6“ =

The pressure coefficient of the reflected wave

(ref. 4, p. 134)

P2-P1
Pr. —.

qx P2-PL

% qo ql

or by use of equdions (3) and (8)
2 sin 29.

can be written b a first

P=V12 2$2
.— —

POVO* PI

approximation

(25)

when it

approach

(26)

as

F’r = ~ 82
P16in 2(01-Sl)



Equations (25) and (27) can be combined to give

5?=

‘in2“8i’5’[cOsv-wn+’ -‘+’GA co”“)1

{ [
&ltan elein 5

COS(e141) plcosvsin( 61-51 )(cos 5L-~sin%) + ~ (~l)~coa ‘1 l-A
1

1 (sin 61+p1cos 81)

En(n+l)

(28)

when 81+0 and cos v = 1 as for equation (26),

[(
K’ @+l - ~n+l

2611-K

)1
P? =

[
PO 1+ : En(n-!-l)

1

(23)

With no suction (D = O), (IQ-K’) ~ is of’ the same order as ~ or 82, so that equations (26)
~d (29) bSCOUE

~, . %@c-K’ )/& \AK/I&
m

n+2 n+2 (30)

an&

Pr =
a3LAK&

Bo(n+2)

In equations (25) to (31.), a pmitive value Of 82 or Pr represents a coqmessive reflection and a s
negative value an expansive reflection. A typical value of AK is indicated in figure 2.

N
LU
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In the foregoing equtions allowance has been made for the use of
suction. Since the mount of air to be removed
is a predetermined factor, the suction pressure
therefore, D may be obtained by using equation

1

y= (%5’)”’
DISCUSSION

(po~no)by suction alone
differential po-pt ~d>
(2) in the form

(32)

For the practical application of the equations developed in this
paper, it is necessary first to obtain experimental data on the charac-
teristics of the porous wall under consideration; that is, determine C
and n of equation (2). On the basis of reference 5, C and n would be
expected to be a function of the free-stream velocity and secondsrytac-
tors such as Reynolds number. Since To is a function of free-stream “
Mach number and total temperature, K and hence C and n are easily deter-
mined by the remaining measumblk quantities of equation (2a).

In the most general form without any simplif@ng assumptions, equa-
tion (22) relates the porous-wall characteristics (K, C, and n) to the
reflected wave strength (52). * preciously stated, 52 canbe deter-
mined, for a given wall calibration and suction, by graphical.inversion
when cos v = 1. Equations (26) and (29) give explicit solutions for
the reflected wave strengths in their most approximate form with suction.
When S2 in equation (22) is made equal to zero, equation (n) is
obtained, which relates the porous-ti characteristics and incident
wave strength, p -p , to the suction for cance~tion. By definition,

+0the porosity fac or through which a wall calibration curve must pass for
shock cancellation with wall suction is givenby equation (9), where q
is relatedto the incident shockwave %y equation (6).

In reference 3 the effect of suction on the sign and magnitude of
reflected disturbances is discussed, and it is pointed out that suction
tends to make a porous wall appear more closed. This effect can be
observed in figure 2, since K for the calibration curves decreases
with increasing pressure difference. In reference 3 it was also indi-
cated that, with a single porous wall, a selected amount of suction can
produce cancellation over a range of incident waves and Mach numbers
which otherwise would result in reflections. As an example, let %11
in figure 2 represent a point for cancellation of an incident wave with-
out suction. According to equation (30) or (31), an expansive reflec-
tion till result in proportion to (Kcll-Ktll)/&ll, which is negative.
Then equation (12) allows an approximate computation of D and hence
(po-pt), fiichisth e~~suctio nrequire dtoc~ce lthereflec~d~ve.
In the more general case, an initial amount of suction, po-pti, maybe

__ — ——
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used which does not achieve complete cancellation of the reflected wave,
as indicated in the figure by K&i. Then the additional amount of suc-
tionrequired to make this point coincide with &SII is (pti-pt). It
is to be noted that the point &si maybe above the real calibration
curve, in which case the suction must be reduced in order to achieve
cancelhtion. In summary, suction translates points on the cancellation
grid of figure 2 to the right and up, which results in a more solid
effect of the porous medium. Calculations for these examples are given
in the appendix, example II.

Since the analysis of this report was based on two-dimensional rela-
tions, the question arises as to the possibility of applying these rela-
tions to three-dimensionalflows. In references 6 and 7 it was shown
that for a given pressure ratio and bow-wave angle, there is both a
wedge and a cone that can produce these conditions. This simply means
that the flow imwliatilybehind a conical bow shock is essentially two-
dimensional. If this result is assmed to apply to a curved three-
dimensional bow wave, then it is possible to represent this three-
dimensional shock disturbance by an equivalent two-dimensional disturb-
ance at the tangent point of the waves. This is shown schematically in
the lower left of fi~ 2. In practice, this procedure amounts to
determining the wave strength near the wall of a three-dimensionalbody
either by direct measurement or the method of characteristics (when
applicable), and then selecting a two-dimensional deflection angle to
correspond to the three-dimensionalpressure rise. A result of this
procedure by direct measurement is shown in figure 2 for a fineness
ratio 12 body of revolution (RM 12) which amounted to O.s&percent
blocked area in a 5- by ~-inch transonic test section. This curve was
obtained by measuring the pressure changes, (p=-po)/po, through the bow
wave near the wall and plotting these values at the appropriate Mach
numbers in figure 2. This is equivalent to computing ~ from equa-
tion (6) and plotting it at the proper value of (p=-po)/po. This pro-
cedure when applied to more complex bodies at various angles of attack
can protide information as to the range of wall porosities that is
needed for approximate interference-free testing of three-dimensional
models.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., May 7, 1954
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NUMERICAL 13xAMmEs

Example I.- Calculation of Coordinates for Points

KoI and Krl in Figure 2

Given:

MO = 1.20

8= = 1.OO

e= = 5!3.6° (from oblique shock relations, ref. 4)

No suction (D = O)

()

-0.40
WQ calibration, K = 0.103

q
P.

. To find KC1

From equation (6)

Cot(el+l) =
%1= ~%

cot(~.6-l.o) = 0.378

1.400X 1.200

From equation (5)

PI-P.
—=
P.

Using the

~%na=tan 81 l.kOOX 1.440x0.01745x1.638
= = o.o~

l+tanbltan 191 1+0.01745x 1.638

wall. calibration

()P-P~
-0.40

K’I = 0.103 =0.103(0.056-0)-0”40 = 0.326
P.

From oblique shock relations, Ml . 1.160. Then, for D = O, equation (28)

—_— .—.
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becomes

P~ =
sin 29=sin 51 [(KC-K’)/&]

[
cos(f31-5=) ~sin(Ol%=) (cos ~=-~sin 8=) i-

1
~ (n+l)cos e=

0.889x 0.0175 [(0.378 - 0.326)/0.378]
= =0.00329

0.536[0.588x0.844(1.00-o.X8 xo.0175)+o.862xL60 XO.5121]

and

P2-P=
2Pr=

P.
=gMo 0.700X1.44X0.00Y9 =0.0033

Therefore,

P=-PO PI-PO P2-Pl
—-l--=

P. = P.
0.0560+ 0.0033 = 0.0593

P.

()P-P~
-0.40

KrI =0.103 ~ =0.103(0.0593)-0”40 = oo319
0

If suction were applied to the porous walls for the above example, the
reflection strengthz pr> would becom Weater.

Example II.- CalmLation of Suction Pressure Differential
Requ&ed to Achieve Cancellation

Given:

q~~ = 0.278

}

computed similar to example I

(P1-Po)/Po =0.0347

()P-Pt
-0.40

Wall calibration, K = 0.103 —Po
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Since 5= is small, equation
the suction pressure differential,

17

(12) (fig. 3) can be used to calculate

(Po-pt)/Po, requ~ed ~ at~in c~cel-
lation. It is first necessary to determine Cc/C which depends on K.T’.
From the wall calibration

--AL

KI1’=0.103 (0.0347)-0”40 =0.395

Then

and from figure 3

Cc Kc 0.278

c
= 0.704

‘=5 ‘E

D . 0,25/3

Therefore, the suction pressure

Po-Pt P=-PO
—D=

P. = Po

differential required is

0.0347x0.25 =0.00m

Since

P=-Pt P=-PO Po-Pt
—— —=
P. = P. + P.

0.0347+ 0.0090 =0.0437

KCS1l =0.103 (0.0437)-0”40 = 0.360

If an initial suction pressure differential, which does not produce
cancellation, is imposed on the test-section walls, the additional suc-
tion required, (pti-pt)/po, can be determined as follows:

Let (po-pti)/po = 0.0050 be the initial suction. Then

Pt--Pt Po-Pt Po-Pti
— =—
P.

-—= 0.0090 -
P. P.

0.0050=0.0040

The point &si, corresponding to the initial suction, c.anbe computed
as follows:

From the wall calibration

Ksi =0.103(0.0050)-0”40 = 0.858

.—.— . . —— ——..—. ——— ——–— .—
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Di = 0.0050 = 0.144
o.03k7

Using equation (9) for 8=-0

~~i . %~ + ‘iKSi . 0.278 +0.1Wxo.8~ = 0.353
l+Di 1 + 0.144

and

P1-P~~ P=-PO Po-Pt~
—+—= 0.0347 + O.oom = 0.0397

PO = Po P.
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